Package 'fst'

Title: Lightning Fast Serialization of Data Frames
Description: Multithreaded serialization of compressed data frames using the 'fst' format. The 'fst' format allows for full random access of stored data and a wide range of compression settings using the LZ4 and ZSTD compressors.
Authors: Mark Klik [aut, cre, cph]
Maintainer: Mark Klik <[email protected]>
License: AGPL-3 | file LICENSE
Version: 0.9.9
Built: 2024-12-28 05:25:25 UTC
Source: https://github.com/fstpackage/fst

Help Index


Lightning Fast Serialization of Data Frames for R.

Description

Multithreaded serialization of compressed data frames using the 'fst' format. The 'fst' format allows for random access of stored data which can be compressed with the LZ4 and ZSTD compressors.

Details

The fst package is based on three C++ libraries:

  • fstlib: library containing code to write, read and compute on files stored in the fst format. Written and owned by Mark Klik.

  • LZ4: library containing code to compress data with the LZ4 compressor. Written and owned by Yann Collet.

  • ZSTD: library containing code to compress data with the ZSTD compressor. Written by Yann Collet and owned by Facebook, Inc.

As of version 0.9.8, these libraries are included in the fstcore package, on which fst depends. The copyright notices of the above libraries can be found in the fstcore package.

Author(s)

Maintainer: Mark Klik [email protected] [copyright holder]

See Also

Useful links:


Compress a raw vector using the LZ4 or ZSTD compressor.

Description

Compress a raw vector using the LZ4 or ZSTD compressor.

Usage

compress_fst(x, compressor = "ZSTD", compression = 0, hash = FALSE)

Arguments

x

raw vector.

compressor

compressor to use for compressing x. Valid options are "LZ4" and "ZSTD" (default).

compression

compression factor used. Must be in the range 0 (lowest compression) to 100 (maximum compression).

hash

Compute hash of compressed data. This hash is stored in the resulting raw vector and can be used during decompression to check the validity of the compressed vector. Hash computation is done with the very fast xxHash algorithm and implemented as a parallel operation, so the performance hit will be very small.


Decompress a raw vector with compressed data.

Description

Decompress a raw vector with compressed data.

Usage

decompress_fst(x)

Arguments

x

raw vector with data previously compressed with compress_fst.

Value

a raw vector with previously compressed data.


Access a fst file like a regular data frame

Description

Create a fst_table object that can be accessed like a regular data frame. This object is just a reference to the actual data and requires only a small amount of memory. When data is accessed, only a subset is read from file, depending on the minimum and maximum requested row number. This is possible because the fst file format allows full random access (in columns and rows) to the stored dataset.

Usage

fst(path, old_format = FALSE)

Arguments

path

path to fst file

old_format

must be FALSE, the old fst file format is deprecated and can only be read and converted with fst package versions 0.8.0 to 0.8.10.

Value

An object of class fst_table

Examples

## Not run: 
# generate a sample fst file
path <- paste0(tempfile(), ".fst")
write_fst(iris, path)

# create a fst_table object that can be used as a data frame
ft <- fst(path)

# print head and tail
print(ft)

# select columns and rows
x <- ft[10:14, c("Petal.Width", "Species")]

# use the common list interface
ft[TRUE]
ft[c(TRUE, FALSE)]
ft[["Sepal.Length"]]
ft$Petal.Length

# use data frame generics
nrow(ft)
ncol(ft)
dim(ft)
dimnames(ft)
colnames(ft)
rownames(ft)
names(ft)

## End(Not run)

Parallel calculation of the hash of a raw vector

Description

Parallel calculation of the hash of a raw vector

Usage

hash_fst(x, seed = NULL, block_hash = TRUE)

Arguments

x

raw vector that you want to hash

seed

The seed value for the hashing algorithm. If NULL, a default seed will be used.

block_hash

If TRUE, a multi-threaded implementation of the 64-bit xxHash algorithm will be used. Note that block_hash = TRUE or block_hash = FALSE will result in different hash values.

Value

hash value


Read metadata from a fst file

Description

Method for checking basic properties of the dataset stored in path.

Usage

metadata_fst(path, old_format = FALSE)

fst.metadata(path, old_format = FALSE)

Arguments

path

path to fst file

old_format

must be FALSE, the old fst file format is deprecated and can only be read and converted with fst package versions 0.8.0 to 0.8.10.

Value

Returns a list with meta information on the stored dataset in path. Has class fstmetadata.

Examples

# Sample dataset
x <- data.frame(
  First = 1:10,
  Second = sample(c(TRUE, FALSE, NA), 10, replace = TRUE),
  Last = sample(LETTERS, 10)
)

# Write to fst file
fst_file <- tempfile(fileext = ".fst")
write_fst(x, fst_file)

# Display meta information
metadata_fst(fst_file)

Get or set the number of threads used in parallel operations

Description

For parallel operations, the performance is determined to a great extend by the number of threads used. More threads will allow the CPU to perform more computational intensive tasks simultaneously, speeding up the operation. Using more threads also introduces some overhead that will scale with the number of threads used. Therefore, using the maximum number of available threads is not always the fastest solution. With threads_fst the number of threads can be adjusted to the users specific requirements. As a default, fst uses a number of threads equal to the number of logical cores in the system.

Usage

threads_fst(nr_of_threads = NULL, reset_after_fork = NULL)

Arguments

nr_of_threads

number of threads to use or NULL to get the current number of threads used in multithreaded operations.

reset_after_fork

when fst is running in a forked process, the usage of OpenMP can create problems. To prevent these, fst switches back to single core usage when it detects a fork. After the fork, the number of threads is reset to it's initial setting. However, on some compilers (e.g. Intel), switching back to multi-threaded mode can lead to issues. When reset_after_fork is set to FALSE, fst is left in single-threaded mode after the fork ends. After the fork, multithreading can be activated again manually by calling threads_fst with an appropriate value for nr_of_threads. The default (reset_after_fork = NULL) leaves the fork behavior unchanged.

Details

The number of threads can also be set with options(fst_threads = N). NOTE: This option is only read when the package's namespace is first loaded, with commands like library, require, or ::. If you have already used one of these, you must use threads_fst to set the number of threads.

Value

the number of threads (previously) used


Read and write fst files.

Description

Read and write data frames from and to a fast-storage ('fst') file. Allows for compression and (file level) random access of stored data, even for compressed datasets. Multiple threads are used to obtain high (de-)serialization speeds but all background threads are re-joined before 'write_fst' and 'read_fst' return (reads and writes are stable). When using a 'data.table' object for 'x', the key (if any) is preserved, allowing storage of sorted data. Methods 'read_fst' and 'write_fst' are equivalent to 'read.fst' and 'write.fst' (but the former syntax is preferred).

Usage

write_fst(x, path, compress = 50, uniform_encoding = TRUE)

write.fst(x, path, compress = 50, uniform_encoding = TRUE)

read_fst(
  path,
  columns = NULL,
  from = 1,
  to = NULL,
  as.data.table = FALSE,
  old_format = FALSE
)

read.fst(
  path,
  columns = NULL,
  from = 1,
  to = NULL,
  as.data.table = FALSE,
  old_format = FALSE
)

Arguments

x

a data frame to write to disk

path

path to fst file

compress

value in the range 0 to 100, indicating the amount of compression to use. Lower values mean larger file sizes. The default compression is set to 50.

uniform_encoding

If 'TRUE', all character vectors will be assumed to have elements with equal encoding. The encoding (latin1, UTF8 or native) of the first non-NA element will used as encoding for the whole column. This will be a correct assumption for most use cases. If 'uniform.encoding' is set to 'FALSE', no such assumption will be made and all elements will be converted to the same encoding. The latter is a relatively expensive operation and will reduce write performance for character columns.

columns

Column names to read. The default is to read all columns.

from

Read data starting from this row number.

to

Read data up until this row number. The default is to read to the last row of the stored dataset.

as.data.table

If TRUE, the result will be returned as a data.table object. Any keys set on dataset x before writing will be retained. This allows for storage of sorted datasets. This option requires data.table package to be installed.

old_format

must be FALSE, the old fst file format is deprecated and can only be read and converted with fst package versions 0.8.0 to 0.8.10.

Value

'read_fst' returns a data frame with the selected columns and rows. 'write_fst' writes 'x' to a 'fst' file and invisibly returns 'x' (so you can use this function in a pipeline).

Examples

# Sample dataset
x <- data.frame(A = 1:10000, B = sample(c(TRUE, FALSE, NA), 10000, replace = TRUE))

# Default compression
fst_file <- tempfile(fileext = ".fst")
write_fst(x, fst_file) # filesize: 17 KB
y <- read_fst(fst_file) # read fst file
# Maximum compression
write_fst(x, fst_file, 100)  # fileSize: 4 KB
y <- read_fst(fst_file) # read fst file

# Random access
y <- read_fst(fst_file, "B") # read selection of columns
y <- read_fst(fst_file, "A", 100, 200) # read selection of columns and rows